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Tutorial Material

https://terranovafr.github.io/teaching/2024-EASSS-Course
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Overview

1 Markov Decision Process

2 Model-Based vs Model-Free Methods

3 Learning Methods

4 Tabular vs Deep Reinforcement Learning

5 Deep Q-Network and Proximal Policy Optimization

6 Best Practices for RL Experiments
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Paradigms of Machine Learning

Image Source: https://medium.com/dataseries/reinforcement-learning-mimics-human-learning-bc701d6ccc08
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Supervised Learning

Definition: Learning from labeled data

Label: The known output or correct answer for a given input

Data: (x , y) — input and label

Goal: Learn a function to map x → y

Applications: Classification, Regression, etc.

Example:

Email spam detection: Emails with text labeled as ”spam” or ”not
spam”

Cat/Dog Image Classification: Images of cats and dogs labeled by
type
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Unsupervised Learning

Definition: Finding patterns in unlabeled data

Data: x — input data with no labels

Goal: Discover hidden structures or patterns in the data

Applications: Clustering, Dimensionality Reduction, etc.

Example:

Customer segmentation in marketing: Grouping customers based on
purchasing behavior

Anomaly detection: Identifying unusual patterns in data, such as
fraud detection in financial transactions
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Reinforcement Learning

Definition: Learning by interacting through trial and error with an
environment that provides a reward signal (distinct from labels)

Goal: Learn the optimal decision-making strategy in its context ↔
maximize cumulative expected reward

Example:

Game Playing: Agents learn strategies for games like Chess

Drone Navigation: Agent navigating towards a destination by
avoiding obstacles
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RL Elements - Environment & Agent

Agent

Environment

Interaction starts at timestep t
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RL Elements - State

Agent

Environment

State st

Input for the agent

Represents the context where
the agent is located

Agent must learn which
elements of the state are
relevant

May not have full visibility of
the environment
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RL Elements - Action

Agent

Environment

Action at
State st

Output for the agent

Action produced conditional on
the state provided as input ↔
at |st
Represents the modification the
agent wants to make to the
environment state
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RL Elements - Reward

Agent

Environment

Action at
State stReward rt+1

Evaluation of the action taken in
the previous state ↔ rt+1 | at , st
Represents a prize or penalty for
the action

Guides the agent in adjusting its
behavior for similar future states

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 13 / 79



RL Elements - Next State

Agent

Environment

Action at
Next State st+1Reward rt+1

Resulting outcome of the action
taken in the previous state ↔
st+1 | at , st
Advances the timestep to t + 1

Enables the sequential
decision-making
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RL Elements - Trial and error

Agent

Environment

Action at
State stReward rt

Agent learns through a loop of
trial and error: state → action
→ reward, next state

Sequential decision-making
inspired by how humans learn
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RL Elements - Simplistic Formulation

The agent policy maps a state to an action:

Action = π(State) where π is the policy

The environment maps an action and state to the next state and
reward:

Next State,Reward = E(State,Action)

where E represents the environment’s dynamics

The overall loop can be summarized as:

Statet+1,Rewardt+1 = E(Statet , π(Statet))
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What Makes RL Different?

No Supervisor: Driven by reward signals, not explicit labeled data

Sequential Decision Making: Optimization of long-term rewards
through a series of actions over time

Delayed Feedback: Feedback may be delayed, potentially sacrificing
short-term rewards for long-term gains

Exploration vs. Exploitation: Choosing between trying new actions
or using known strategies
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RL Definitions: Episodes, Trajectory, and Iterations

Episode: A complete sequence of steps from the initial state to a
terminal state or goal, after which the process restarts

Trajectory τ : A sequence of states, actions, and rewards from the
start to the end of an episode

τ = (s0, a0, r1, s1, a1, r2, . . . , sT , aT , rT+1)

Finite Episode: Episode length T <∞

Infinite Episode: Episode length T →∞

Cutoff or Goal: The condition or point at which an episode ends
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Steps for RL Formulation

Identify the State (s):

Determine what information defines the current situation of the agent

Define the Actions (a):

Specify the possible decisions or moves the agent can take from each
state

Specify the Reward (r):

Decide how to quantify the feedback for each action in a given state

Design the Environment Interaction:

Define state transitions and reward assignments based on actions
Specify episode structure, including length and termination criteria
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Example - Breakout (Atari Game)

Image from https://www.coolmathgames.

com/fr/0-atari-breakout

State Space:
Raw pixel values from the game screen,
2D array of pixels

Action Space:
Discrete actions: moving the paddle left,
right, or no action

Reward Function:
Positive reward for destroying bricks
Negative reward for losing the ball

Episode:
Starts with the paddle at the bottom and
the ball in motion
Ends when the ball falls below the paddle
or all bricks are destroyed
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Example - AlphaGo (Go Game)

Image from Engadget

State Space:
Board configurations, including the
positions of black and white stones

Action Space:
Placing a stone at any empty intersection
on the board

Reward Function:
Positive reward for winning the game
Negative reward for losing

Episode:
Begins with an empty board
Ends when a winner is determined
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Markov Decision Process (MDP) Formulation

MDP: (S,A,P,R, γ)
S : State space

A : Action space

P : S ×A → S, State transition function

R : S ×A → R, Reward function

γ : Discount factor
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Model-based Methods

One approach to finding optimal behavior in an environment involves
approximating P and R:

Know R: Determines the quality of each action in st for each t

Know P: Predicts st+1 based on at in st . Allows recalculation of P
and R based on st+1 and at+1

Challenges: This approach can be impractical for real-world problems
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Model-Free Methods

Indirectly approximate environment by approximating the policy:

Policy Approximation: Learn a policy π(s)→ a, which maps states
s to actions a

Objective: Optimize the policy to maximize the cumulative expected
reward (or return) over time
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Return

Return (Gt): The total accumulated reward an agent expects to receive
starting from time step t

Definition:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γk rt+k+1

Finite Episode: The sum is limited to a fixed number of steps, T ,
rather than extending to infinity

Components:
rt+1, rt+2, . . .: Rewards received at each time step
γ: Discount factor, 0 ≤ γ ≤ 1
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Discounting rewards

Role of Discount Factor (γ):

Trade-off Decision: Determines the trade-off between immediate
rewards and future rewards

γ = 0: Focuses only on immediate reward

Gt = rt+1

γ = 1: Values future rewards as much as immediate rewards

Gt = rt+1 + rt+2 + rt+3 + . . . =
∞∑
k=0

rt+k+1

Practical Use: strictly between 0 and 1
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Summary

RL is a ML paradigm involving a loop of trial and error

The reward signal guides the learning process

Environment modeled as MDP

Model-free methods preferred for real-world problems

Maximization of Eπ[Gt ] properly setting γ
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Model-Free Methods

We do not approximate P and R, we approximate them indirectly:

Policy-Based: The policy π(a|s)
Value-Based: Value functions V (s) or Q(s, a)

Actor-Critic: Both policy π(a|s) and value functions
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Policy-based methods

Objective: Directly learn a policy π(a|s) representing the agent

The policy (π) outputs the probability of taking action a in state s

π(a|s) = P(at = a|st = s)

Optimization Problem: Train the policy to maximize the cumulative
expected reward:

J(π) = Eπ[Gt ]
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Value-based methods

Objective: Approximate a function that provides the quality (value)
of states or actions

Potential Options:
State Value Function (V (s)): Estimates the expected return starting
from state s and following a particular policy π:

V (s) = Eπ[Gt |st = s]

Action Value Function (Q(s, a)): Estimates the expected return of
taking action a in state s and following a particular policy π:

Q(s, a) = Eπ[Gt |st = s, at = a]
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Interconnection of π, V, and Q

From Q to π: Optimal policy can be derived directly by selecting
actions with the highest Q-value:

π(s) = argmax
a

Q(s, a)

However, we have no direct mapping from V to π

Same from π to V or Q
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Actor-critic methods

Objective: Combine policy-based and value-based methods to
improve learning

Components:
Actor: Learns the policy π(a|s) to select actions
Critic: Estimates the value function V (s) to evaluate the quality of
the states

Leveraging the value estimate to inform the policy updates
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RL Intersections

Image Source: Odonkor, Philip & Lewis, Kemper. (2018). Control of Shared Energy Storage Assets Within Building Clusters
Using Reinforcement Learning. 10.1115/DETC2018-86094.
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Algorithms for Learning

Objective: Find functions that maximize Eπ[Gt ] using iterative
optimization methods

Value-Based Methods:
Update Formula: Bellman Equation

Policy-Based Methods:
Update Formula: Policy Gradient Theorem, . . .

Actor-Critic Methods:
Combination of update formulas to reach the approximation of actor
and critic
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Optimality

Derive Optimal Policy in RL Problems:

From Policy-Based / Actor-Critic Methods: directly derive the
optimal policy (π∗)

From Value-Based Methods:

Approximate the optimal action-value function (Q∗)
Derive the optimal policy (π∗) from this function:

π∗(a|s) = argmax
a

Q∗(s, a)
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How to choose?

Choosing the right RL method:

Policy-Based / Actor-Critic Methods:
Converge to probabilistic (stochastic) policies
Reason: Optimize a policy π(a|s), that inherently approximate a
probability distribution:

π∗(a|s) = P(a|s)

Value-Based Methods:
Converge to deterministic policies
Reason: Derive the policy by selecting the unique maximum action in
each state:

π∗(a|s) = argmax
a

Q∗(s, a)
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Grid World

Slide credit: D. Silver

State: (x,y) position

Action: up, down, left, right

Rewards: -1 per time-step

Episode termination: Reach goal
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Grid World

Slide credit: D. Silver

Optimal value function V ∗
π (s)

Expected return in each state
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Grid World

Slide credit: D. Silver

Optimal policy function π∗(a|s)
The optimal policy is
deterministic

Actions that maximize expected
return in each state

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 39 / 79



Tabular RL

Tabular RL Overview:

Definition: Uses tables (arrays) to represent and approximate policies
and value functions

Tabular Representation:
Value Function Table
Action-Value Function Table
Policy Function Table
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Tabular RL

Tabular representation of the value function Tabular representation of the action-value function

Tabular representation of the policy
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Limitations of Tabular RL

Challenges and Limitations:

Scalability:
Optimization: Slow convergence and inefficient learning in large
environments
Memory: Tables become impractical with large state or action spaces
due to memory constraints

Generalization:
No ability to generalize across unseen states or actions

Continuous Spaces:
Inapplicable for environments with continuous state and action spaces
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RL Elements - Discrete vs Continuous

Discrete vs Continuous Spaces:

Discrete:
Definition: Finite/countable states/actions
Example: Board games

Continuous:
Definition: Infinite states/actions
Example: Robot arm angles
Note: Requires specialized algorithms

Mixed:
Definition: Both discrete and continuous elements
Example: Video games with levels and player control
Note: May need hybrid approaches
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Function Approximation

Parameterized Models:
Represent the policy π(a|s), action-value function Q(s, a), or value
function V (s) using a parameterized function:

πθ(a|s) Qθ(s, a) Vθ(s)

Here, θ represents the parameters of the function to be optimized for
the return maximization
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Function Approximators

πθ : S × θ → A
V π
θ : S × θ → R

Qπ
θ : S ×A× θ → R

θ ∈ Θ, parameter space
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Function Approximators

πθ : S × θ → A
V π
θ : S × θ → R

Qπ
θ : S × θ → R|A|

θ ∈ Θ, parameter space
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Function Approximators

Advantages:
Generalization: Handle large or continuous state and action spaces by
generalizing across similar states and actions
Efficiency: Reduce memory usage compared to tabular methods
Optimization: Efficients algorithms for iterative optimization

Deep RL relies on deep learning, using neural networks (NN) as
function approximators
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Deep Learning

Definition: A subset of machine learning involving NNs with multiple
layers

Architecture: Composed of input, hidden, and output layers

Universal Function Approximator: NNs are capable of
approximating any continuous function to a desired level of accuracy,
given enough neurons and layers

Uses backpropagation to adjust weights, with gradients computed
to minimize error through optimization algorithms

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 48 / 79



Neural Networks as Function Approximators

General Update Rule:

θ ← θ − α∇θJ(θ)

where

θ denotes the model parameters

α is the learning rate

∇θJ(θ) represents the gradient of the loss function J(θ)

Iterative update formulas will be used to define the loss function for
updating the function parameters θ

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 49 / 79



Deep Reinforcement Learning

NN approximating the value function NN approximating the action-value function

NN approximating the policy function.

Images generated with https://alexlenail.me/NN-SVG/
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Established DRL Algorithms

Value-Based
Deep Q-Network (DQN)
. . .

Policy-Based
Proximal Policy Optimization (PPO)
Trust Region Policy Optimization (TRPO)
. . .

Actor-Critic
Advantage Actor Critic (A2C)
. . .
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Deep Q-Network (DQN)

What is DQN?
Combines Q-learning with deep NNs
Approximates the Q-value function

Q(s, a; θ) ≈ Q∗(s, a)

Uses an experience replay to store and reuse experiences
Widely used version incorporates additional strategies to improve
learning
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DQN Algorithm (Part 1)

1 Initialize Q-network Qθ(s, a) with random weights θ

2 Initialize an empty replay buffer

3 Collect experience (s, a, r , s ′) from the environment using the
Q-network and store it in the replay buffer

4 Randomly sample a mini-batch of k transitions (si , ai , ri , s
′
i ) from the

replay buffer
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DQN Algorithm (Part 2)

5 Compute target Q-values using the Bellman equation:

yi = ri + γmax
a′

Qθ(s
′
i , a

′)

6 Compute the loss over the mini-batch:

L(θ) =
1

2k

k∑
i=1

(yi − Qθ(si , ai ))
2

7 Update the Q-network by minimizing the loss:

θ ← θ − η∇θL(θ)

8 Repeat from step 3 until convergence
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Target Network

Concept: A target network is a separate Q-network Qθ−(s, a) that
provides stable Q-value estimates for the Bellman equation

Purpose: Avoid instability in learning due to rapidly changing
Q-values

Periodically update the target network weights to match the online
network weights Qθ(s, a)

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 55 / 79



DQN Algorithm (Part 1)

1 Initialize Q-network Qθ(s, a) with random weights θ

2 Initialize target network Qθ−(s, a) with the same weights as
Qθ(s, a)

3 Initialize an empty replay buffer

4 Collect experience (s, a, r , s ′) from the environment using the
Q-network and store it in the replay buffer

5 Randomly sample a mini-batch of k transitions (si , ai , ri , s
′
i ) from the

replay buffer
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DQN Algorithm (Part 2)

5 Compute target Q-values using the target network Qθ−:

yi = ri + γmax
a′

Qθ−(s
′
i , a

′)

6 Compute the loss over the mini-batch:

L(θ) =
1

2k

k∑
i=1

(yi − Qθ(si , ai ))
2

7 Update the Q-network by minimizing the loss:

θ ← θ − η∇θL(θ)

8 Periodically update the target network weights to match the
online network weights

9 Repeat from step 3 until convergence
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ϵ-greedy Strategy

Concept: Balances exploration and exploitation in action selection

Strategy:
With probability ϵ, select a random action (exploration)
With probability 1− ϵ, select the action that maximizes the Q-value
(exploitation)

Equation:

at =

{
random action with probability ϵ

argmaxa Qθ(st , a) with probability 1− ϵ
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ϵ Decay in ϵ-Greedy Strategy

Purpose of Epsilon Decay:
Start with high exploration to gather diverse experiences
Gradually shift towards exploitation to refine the policy

Epsilon Linear Decay Function:

ϵt = max(ϵmin, ϵ0 · decay ratet)

ϵt : Epsilon value at time t
ϵ0: Initial epsilon value
decay rate: Rate at which epsilon decreases
ϵmin: Minimum value epsilon can decay to

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 59 / 79



DQN Algorithm (Part 1)

1 Initialize Q-network Qθ(s, a) with random weights θ

2 Initialize target network Qθ−(s, a) with the same weights as Qθ(s, a)

3 Initialize an empty replay buffer
4 Collect experience (s, a, r , s ′) from the environment

with probability ϵ, select a random action
otherwise, select the action that maximizes Qθ(s, a)

5 Randomly sample a mini-batch of k transitions (si , ai , ri , s
′
i ) from the

replay buffer
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DQN Algorithm (Part 2)

5 Compute target Q-values using the target network Qθ− :

yi = ri + γmax
a′

Qθ−(s
′
i , a

′)

6 Compute the loss over the mini-batch:

L(θ) =
1

2k

k∑
i=1

(yi − Qθ(si , ai ))
2

7 Update the Q-network by minimizing the loss:

θ ← θ − η∇θL(θ)

8 Periodically update the target network weights to match the online
network weights

9 Repeat from step 3 until convergence
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DQN Improvements

Dueling DQN: Improve value estimation

Double DQN: Reduces overestimation bias

Prioritized Replay: Changes sampling strategy

Noisy DQN: Noisy networks instead of ϵ-greedy

Distributional DQN: From expected Q-value to distribution
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Proximal Policy Optimization (PPO)

What is PPO?
An optimization algorithm aimed to approximate a policy function

πθ(a|s) ≈ Optimal Policy Distribution

Optimizes the policy using a clipped surrogate objective (here
simplified):

L(θ) = Et

[
clip

(
πθ(at |st)
πθold(at |st)

, 1− ϵ, 1 + ϵ

)
Ât

]
Uses clipping to ensure stable and reliable updates by preventing large
policy changes
Uses the advantage of the action Ât for the update
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PPO Algorithm

1 Initialize the policy network πθ with random weights

2 Collect data by interacting with the environment using the current
policy

3 Compute the advantage Â(s, a) for each time step

4 Update the policy network by maximizing the PPO objective
(simplified):

L(θ) = Et

[
clip

(
πθ(at |st)
πθold(at |st)

, 1− ϵ, 1 + ϵ

)
Ât

]
5 Repeat steps 2 to 4 until convergence
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Recap

Model-Free Methods:
Do not require a model of the environment
Suited for real-world complexities

Classes of Methods:
Value-Based (e.g., DQN), Policy-Based (e.g., PPO), and Actor-Critic

Tabular RL Limitations:
Struggle with large or continuous state/action spaces

Deep NNs:
Address scalability issues by approximating functions in complex
environments
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Extra
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Best Practices for RL Experiments

Reporting and Analysis

Plot reward versus steps/episodes to visualize learning progress and
convergence

Use relevant metrics, such as reward or domain-specific measures, for
evaluation

Document experimental settings and results for reproducibility and
future reference

Generalization and Robustness

Assess how well the policy generalizes to new or unseen environments

Evaluate the algorithm’s robustness to different conditions or noise
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Best Practices for RL Experiments

Comparison

Compare multiple RL algorithms to identify the most effective
approach

Explore hyper-parameters or use hyperparameter optimization
techniques

Conduct multiple runs with different random seeds to ensure result
robustness and reproducibility

Report confidence intervals (CIs) to improve reliability with few runs
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Best Practices for RL Experiments

Others

Consider normalization of the observation space and reward signal

Consider the sample efficiency of algorithms

Consider the NN size or function approximator used

Determine which environment parameters affect learning and how
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Partially Observable Markov Decision Process

POMDP: (S ,A,T ,R,Ω,O, γ)

S : State space (hidden states)

A : Action space

Ω : Observation space

O : S × A× Ω→ [0, 1], Observation function

P : S × A→ S , State transition function

R : S × A→ R, Reward function

γ : Discount factor
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Challenges and Algorithms for POMDPs

More suited for modeling realistic scenarios

Some information may not be available at deployment phase

Challenges:
Incomplete or noisy information
Hidden states complicate decision-making

Need DRL to converge also in front of partial observability
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A Distributional Perspective on Reinforcement Learning

arXiv preprint arXiv:1707.06887.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 74 / 79



References - Part 4

[Akiba et al., 2019] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama (2019)

Optuna: A Next-generation Hyperparameter Optimization Framework

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[Schulman et al., 2017] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov (2017)

Proximal Policy Optimization Algorithms

arXiv preprint arXiv:1707.06347.

[Bellman, 1957] Richard Bellman (1957)

Dynamic Programming

Princeton University Press, Princeton Mathematical Series, Volume 1.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 75 / 79



See you soon at the lab session!
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Installation Toolkit

Installation Toolkit:
IDE: Install an Integrated Development Environment (IDE) like
PyCharm or VSCode for coding
Environment: Anaconda, Miniconda, venv, . . .
Packages: Install the two packages ”stable baselines3” and
”tensorboard”. Alternatively, download the environment.yml or
requirements.txt file from the code in
https://terranovafr.github.io/teaching/2024-EASSS-Course.
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Creating Environments & Installation of Libraries

Environment Setup:
Using conda:

conda create --name myenv python=3.8

conda activate myenv

Using venv:

python3 -m venv myenv

source myenv/bin/activate (macOS/Linux)
myenv\Scripts\activate (Windows)

Installing Packages:
Install stable-baselines3 and tensorboard:

Direct installation: pip install stable-baselines3 tensorboard

Using environment.yml: conda env create -f environment.yml

Using requirements.txt: pip install -r requirements.txt

The pip command may be pip3
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Installation using existing files

Using environment.yml:
Create environment: conda env create -f environment.yml

Using requirements.txt:
pip install -r requirements.txt
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