
Deep Reinforcement Learning: Foundations and
Practical Environment Setup for Real-World

Applications

Franco Terranova

Université de Lorraine, CNRS, INRIA, LORIA

24th European Agent Systems Summer School, EASSS 2024

Dublin, Ireland

August 20, 2024

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 1 / 79

About Me

Name: Franco Terranova
PhD Student @ INRIA Center of the Université de
Lorraine - Nancy, France
Current Project: Deep Reinforcement Learning for
Cyber-Attack Paths Prediction
Previous Project: Deep Reinforcement Learning
for a Self-driving Telescope
Email: franco.terranova@inria.fr

PROGRAMME
DE RECHERCHE

CYBERSÉCURITÉ

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 2 / 79

About Me

Name: Franco Terranova
Nationality: Italian
Interests: World Exploration, Asian Food, Drones,
Space Exploration, Piano
Future Ambitions: PhD → Postdoc Experience →
Academia

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 3 / 79

Tutorial Material

https://terranovafr.github.io/teaching/2024-EASSS-Course

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 4 / 79

https://terranovafr.github.io/teaching/2024-EASSS-Course

Overview

1 Markov Decision Process

2 Model-Based vs Model-Free Methods

3 Learning Methods

4 Tabular vs Deep Reinforcement Learning

5 Deep Q-Network and Proximal Policy Optimization

6 Best Practices for RL Experiments

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 5 / 79

Paradigms of Machine Learning

Image Source: https://medium.com/dataseries/reinforcement-learning-mimics-human-learning-bc701d6ccc08

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 6 / 79

https://medium.com/dataseries/reinforcement-learning-mimics-human-learning-bc701d6ccc08

Supervised Learning

Definition: Learning from labeled data

Label: The known output or correct answer for a given input

Data: (x , y) — input and label

Goal: Learn a function to map x → y

Applications: Classification, Regression, etc.

Example:

Email spam detection: Emails with text labeled as ”spam” or ”not
spam”

Cat/Dog Image Classification: Images of cats and dogs labeled by
type

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 7 / 79

Unsupervised Learning

Definition: Finding patterns in unlabeled data

Data: x — input data with no labels

Goal: Discover hidden structures or patterns in the data

Applications: Clustering, Dimensionality Reduction, etc.

Example:

Customer segmentation in marketing: Grouping customers based on
purchasing behavior

Anomaly detection: Identifying unusual patterns in data, such as
fraud detection in financial transactions

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 8 / 79

Reinforcement Learning

Definition: Learning by interacting through trial and error with an
environment that provides a reward signal (distinct from labels)

Goal: Learn the optimal decision-making strategy in its context ↔
maximize cumulative expected reward

Example:

Game Playing: Agents learn strategies for games like Chess

Drone Navigation: Agent navigating towards a destination by
avoiding obstacles

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 9 / 79

RL Elements - Environment & Agent

Agent

Environment

Interaction starts at timestep t

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 10 / 79

RL Elements - State

Agent

Environment

State st

Input for the agent

Represents the context where
the agent is located

Agent must learn which
elements of the state are
relevant

May not have full visibility of
the environment

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 11 / 79

RL Elements - Action

Agent

Environment

Action at
State st

Output for the agent

Action produced conditional on
the state provided as input ↔
at |st
Represents the modification the
agent wants to make to the
environment state

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 12 / 79

RL Elements - Reward

Agent

Environment

Action at
State stReward rt+1

Evaluation of the action taken in
the previous state ↔ rt+1 | at , st
Represents a prize or penalty for
the action

Guides the agent in adjusting its
behavior for similar future states

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 13 / 79

RL Elements - Next State

Agent

Environment

Action at
Next State st+1Reward rt+1

Resulting outcome of the action
taken in the previous state ↔
st+1 | at , st
Advances the timestep to t + 1

Enables the sequential
decision-making

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 14 / 79

RL Elements - Trial and error

Agent

Environment

Action at
State stReward rt

Agent learns through a loop of
trial and error: state → action
→ reward, next state

Sequential decision-making
inspired by how humans learn

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 15 / 79

RL Elements - Simplistic Formulation

The agent policy maps a state to an action:

Action = π(State) where π is the policy

The environment maps an action and state to the next state and
reward:

Next State,Reward = E(State,Action)

where E represents the environment’s dynamics

The overall loop can be summarized as:

Statet+1,Rewardt+1 = E(Statet , π(Statet))

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 16 / 79

What Makes RL Different?

No Supervisor: Driven by reward signals, not explicit labeled data

Sequential Decision Making: Optimization of long-term rewards
through a series of actions over time

Delayed Feedback: Feedback may be delayed, potentially sacrificing
short-term rewards for long-term gains

Exploration vs. Exploitation: Choosing between trying new actions
or using known strategies

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 17 / 79

RL Definitions: Episodes, Trajectory, and Iterations

Episode: A complete sequence of steps from the initial state to a
terminal state or goal, after which the process restarts

Trajectory τ : A sequence of states, actions, and rewards from the
start to the end of an episode

τ = (s0, a0, r1, s1, a1, r2, . . . , sT , aT , rT+1)

Finite Episode: Episode length T <∞

Infinite Episode: Episode length T →∞

Cutoff or Goal: The condition or point at which an episode ends

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 18 / 79

Steps for RL Formulation

Identify the State (s):

Determine what information defines the current situation of the agent

Define the Actions (a):

Specify the possible decisions or moves the agent can take from each
state

Specify the Reward (r):

Decide how to quantify the feedback for each action in a given state

Design the Environment Interaction:

Define state transitions and reward assignments based on actions
Specify episode structure, including length and termination criteria

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 19 / 79

Example - Breakout (Atari Game)

Image from https://www.coolmathgames.

com/fr/0-atari-breakout

State Space:
Raw pixel values from the game screen,
2D array of pixels

Action Space:
Discrete actions: moving the paddle left,
right, or no action

Reward Function:
Positive reward for destroying bricks
Negative reward for losing the ball

Episode:
Starts with the paddle at the bottom and
the ball in motion
Ends when the ball falls below the paddle
or all bricks are destroyed

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 20 / 79

https://www.coolmathgames.com/fr/0-atari-breakout
https://www.coolmathgames.com/fr/0-atari-breakout

Example - AlphaGo (Go Game)

Image from Engadget

State Space:
Board configurations, including the
positions of black and white stones

Action Space:
Placing a stone at any empty intersection
on the board

Reward Function:
Positive reward for winning the game
Negative reward for losing

Episode:
Begins with an empty board
Ends when a winner is determined

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 21 / 79

https://www.engadget.com/2016-03-12-watch-alphago-vs-lee-sedol-round-3-live-right-now.html

Markov Decision Process (MDP) Formulation

MDP: (S,A,P,R, γ)
S : State space

A : Action space

P : S ×A → S, State transition function

R : S ×A → R, Reward function

γ : Discount factor

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 22 / 79

Model-based Methods

One approach to finding optimal behavior in an environment involves
approximating P and R:

Know R: Determines the quality of each action in st for each t

Know P: Predicts st+1 based on at in st . Allows recalculation of P
and R based on st+1 and at+1

Challenges: This approach can be impractical for real-world problems

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 23 / 79

Model-Free Methods

Indirectly approximate environment by approximating the policy:

Policy Approximation: Learn a policy π(s)→ a, which maps states
s to actions a

Objective: Optimize the policy to maximize the cumulative expected
reward (or return) over time

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 24 / 79

Return

Return (Gt): The total accumulated reward an agent expects to receive
starting from time step t

Definition:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . . =
∞∑
k=0

γk rt+k+1

Finite Episode: The sum is limited to a fixed number of steps, T ,
rather than extending to infinity

Components:
rt+1, rt+2, . . .: Rewards received at each time step
γ: Discount factor, 0 ≤ γ ≤ 1

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 25 / 79

Discounting rewards

Role of Discount Factor (γ):

Trade-off Decision: Determines the trade-off between immediate
rewards and future rewards

γ = 0: Focuses only on immediate reward

Gt = rt+1

γ = 1: Values future rewards as much as immediate rewards

Gt = rt+1 + rt+2 + rt+3 + . . . =
∞∑
k=0

rt+k+1

Practical Use: strictly between 0 and 1

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 26 / 79

Summary

RL is a ML paradigm involving a loop of trial and error

The reward signal guides the learning process

Environment modeled as MDP

Model-free methods preferred for real-world problems

Maximization of Eπ[Gt] properly setting γ

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 27 / 79

Model-Free Methods

We do not approximate P and R, we approximate them indirectly:

Policy-Based: The policy π(a|s)
Value-Based: Value functions V (s) or Q(s, a)

Actor-Critic: Both policy π(a|s) and value functions

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 28 / 79

Policy-based methods

Objective: Directly learn a policy π(a|s) representing the agent

The policy (π) outputs the probability of taking action a in state s

π(a|s) = P(at = a|st = s)

Optimization Problem: Train the policy to maximize the cumulative
expected reward:

J(π) = Eπ[Gt]

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 29 / 79

Value-based methods

Objective: Approximate a function that provides the quality (value)
of states or actions

Potential Options:
State Value Function (V (s)): Estimates the expected return starting
from state s and following a particular policy π:

V (s) = Eπ[Gt |st = s]

Action Value Function (Q(s, a)): Estimates the expected return of
taking action a in state s and following a particular policy π:

Q(s, a) = Eπ[Gt |st = s, at = a]

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 30 / 79

Interconnection of π, V, and Q

From Q to π: Optimal policy can be derived directly by selecting
actions with the highest Q-value:

π(s) = argmax
a

Q(s, a)

However, we have no direct mapping from V to π

Same from π to V or Q

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 31 / 79

Actor-critic methods

Objective: Combine policy-based and value-based methods to
improve learning

Components:
Actor: Learns the policy π(a|s) to select actions
Critic: Estimates the value function V (s) to evaluate the quality of
the states

Leveraging the value estimate to inform the policy updates

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 32 / 79

RL Intersections

Image Source: Odonkor, Philip & Lewis, Kemper. (2018). Control of Shared Energy Storage Assets Within Building Clusters
Using Reinforcement Learning. 10.1115/DETC2018-86094.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 33 / 79

Algorithms for Learning

Objective: Find functions that maximize Eπ[Gt] using iterative
optimization methods

Value-Based Methods:
Update Formula: Bellman Equation

Policy-Based Methods:
Update Formula: Policy Gradient Theorem, . . .

Actor-Critic Methods:
Combination of update formulas to reach the approximation of actor
and critic

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 34 / 79

Optimality

Derive Optimal Policy in RL Problems:

From Policy-Based / Actor-Critic Methods: directly derive the
optimal policy (π∗)

From Value-Based Methods:

Approximate the optimal action-value function (Q∗)
Derive the optimal policy (π∗) from this function:

π∗(a|s) = argmax
a

Q∗(s, a)

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 35 / 79

How to choose?

Choosing the right RL method:

Policy-Based / Actor-Critic Methods:
Converge to probabilistic (stochastic) policies
Reason: Optimize a policy π(a|s), that inherently approximate a
probability distribution:

π∗(a|s) = P(a|s)

Value-Based Methods:
Converge to deterministic policies
Reason: Derive the policy by selecting the unique maximum action in
each state:

π∗(a|s) = argmax
a

Q∗(s, a)

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 36 / 79

Grid World

Slide credit: D. Silver

State: (x,y) position

Action: up, down, left, right

Rewards: -1 per time-step

Episode termination: Reach goal

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 37 / 79

Grid World

Slide credit: D. Silver

Optimal value function V ∗
π (s)

Expected return in each state

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 38 / 79

Grid World

Slide credit: D. Silver

Optimal policy function π∗(a|s)
The optimal policy is
deterministic

Actions that maximize expected
return in each state

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 39 / 79

Tabular RL

Tabular RL Overview:

Definition: Uses tables (arrays) to represent and approximate policies
and value functions

Tabular Representation:
Value Function Table
Action-Value Function Table
Policy Function Table

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 40 / 79

Tabular RL

Tabular representation of the value function Tabular representation of the action-value function

Tabular representation of the policy

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 41 / 79

Limitations of Tabular RL

Challenges and Limitations:

Scalability:
Optimization: Slow convergence and inefficient learning in large
environments
Memory: Tables become impractical with large state or action spaces
due to memory constraints

Generalization:
No ability to generalize across unseen states or actions

Continuous Spaces:
Inapplicable for environments with continuous state and action spaces

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 42 / 79

RL Elements - Discrete vs Continuous

Discrete vs Continuous Spaces:

Discrete:
Definition: Finite/countable states/actions
Example: Board games

Continuous:
Definition: Infinite states/actions
Example: Robot arm angles
Note: Requires specialized algorithms

Mixed:
Definition: Both discrete and continuous elements
Example: Video games with levels and player control
Note: May need hybrid approaches

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 43 / 79

Function Approximation

Parameterized Models:
Represent the policy π(a|s), action-value function Q(s, a), or value
function V (s) using a parameterized function:

πθ(a|s) Qθ(s, a) Vθ(s)

Here, θ represents the parameters of the function to be optimized for
the return maximization

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 44 / 79

Function Approximators

πθ : S × θ → A
V π
θ : S × θ → R

Qπ
θ : S ×A× θ → R

θ ∈ Θ, parameter space

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 45 / 79

Function Approximators

πθ : S × θ → A
V π
θ : S × θ → R

Qπ
θ : S × θ → R|A|

θ ∈ Θ, parameter space

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 46 / 79

Function Approximators

Advantages:
Generalization: Handle large or continuous state and action spaces by
generalizing across similar states and actions
Efficiency: Reduce memory usage compared to tabular methods
Optimization: Efficients algorithms for iterative optimization

Deep RL relies on deep learning, using neural networks (NN) as
function approximators

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 47 / 79

Deep Learning

Definition: A subset of machine learning involving NNs with multiple
layers

Architecture: Composed of input, hidden, and output layers

Universal Function Approximator: NNs are capable of
approximating any continuous function to a desired level of accuracy,
given enough neurons and layers

Uses backpropagation to adjust weights, with gradients computed
to minimize error through optimization algorithms

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 48 / 79

Neural Networks as Function Approximators

General Update Rule:

θ ← θ − α∇θJ(θ)

where

θ denotes the model parameters

α is the learning rate

∇θJ(θ) represents the gradient of the loss function J(θ)

Iterative update formulas will be used to define the loss function for
updating the function parameters θ

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 49 / 79

Deep Reinforcement Learning

NN approximating the value function NN approximating the action-value function

NN approximating the policy function.

Images generated with https://alexlenail.me/NN-SVG/

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 50 / 79

https://alexlenail.me/NN-SVG/

Established DRL Algorithms

Value-Based
Deep Q-Network (DQN)
. . .

Policy-Based
Proximal Policy Optimization (PPO)
Trust Region Policy Optimization (TRPO)
. . .

Actor-Critic
Advantage Actor Critic (A2C)
. . .

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 51 / 79

Deep Q-Network (DQN)

What is DQN?
Combines Q-learning with deep NNs
Approximates the Q-value function

Q(s, a; θ) ≈ Q∗(s, a)

Uses an experience replay to store and reuse experiences
Widely used version incorporates additional strategies to improve
learning

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 52 / 79

DQN Algorithm (Part 1)

1 Initialize Q-network Qθ(s, a) with random weights θ

2 Initialize an empty replay buffer

3 Collect experience (s, a, r , s ′) from the environment using the
Q-network and store it in the replay buffer

4 Randomly sample a mini-batch of k transitions (si , ai , ri , s
′
i) from the

replay buffer

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 53 / 79

DQN Algorithm (Part 2)

5 Compute target Q-values using the Bellman equation:

yi = ri + γmax
a′

Qθ(s
′
i , a

′)

6 Compute the loss over the mini-batch:

L(θ) =
1

2k

k∑
i=1

(yi − Qθ(si , ai))
2

7 Update the Q-network by minimizing the loss:

θ ← θ − η∇θL(θ)

8 Repeat from step 3 until convergence

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 54 / 79

Target Network

Concept: A target network is a separate Q-network Qθ−(s, a) that
provides stable Q-value estimates for the Bellman equation

Purpose: Avoid instability in learning due to rapidly changing
Q-values

Periodically update the target network weights to match the online
network weights Qθ(s, a)

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 55 / 79

DQN Algorithm (Part 1)

1 Initialize Q-network Qθ(s, a) with random weights θ

2 Initialize target network Qθ−(s, a) with the same weights as
Qθ(s, a)

3 Initialize an empty replay buffer

4 Collect experience (s, a, r , s ′) from the environment using the
Q-network and store it in the replay buffer

5 Randomly sample a mini-batch of k transitions (si , ai , ri , s
′
i) from the

replay buffer

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 56 / 79

DQN Algorithm (Part 2)

5 Compute target Q-values using the target network Qθ−:

yi = ri + γmax
a′

Qθ−(s
′
i , a

′)

6 Compute the loss over the mini-batch:

L(θ) =
1

2k

k∑
i=1

(yi − Qθ(si , ai))
2

7 Update the Q-network by minimizing the loss:

θ ← θ − η∇θL(θ)

8 Periodically update the target network weights to match the
online network weights

9 Repeat from step 3 until convergence

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 57 / 79

ϵ-greedy Strategy

Concept: Balances exploration and exploitation in action selection

Strategy:
With probability ϵ, select a random action (exploration)
With probability 1− ϵ, select the action that maximizes the Q-value
(exploitation)

Equation:

at =

{
random action with probability ϵ

argmaxa Qθ(st , a) with probability 1− ϵ

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 58 / 79

ϵ Decay in ϵ-Greedy Strategy

Purpose of Epsilon Decay:
Start with high exploration to gather diverse experiences
Gradually shift towards exploitation to refine the policy

Epsilon Linear Decay Function:

ϵt = max(ϵmin, ϵ0 · decay ratet)

ϵt : Epsilon value at time t
ϵ0: Initial epsilon value
decay rate: Rate at which epsilon decreases
ϵmin: Minimum value epsilon can decay to

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 59 / 79

DQN Algorithm (Part 1)

1 Initialize Q-network Qθ(s, a) with random weights θ

2 Initialize target network Qθ−(s, a) with the same weights as Qθ(s, a)

3 Initialize an empty replay buffer
4 Collect experience (s, a, r , s ′) from the environment

with probability ϵ, select a random action
otherwise, select the action that maximizes Qθ(s, a)

5 Randomly sample a mini-batch of k transitions (si , ai , ri , s
′
i) from the

replay buffer

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 60 / 79

DQN Algorithm (Part 2)

5 Compute target Q-values using the target network Qθ− :

yi = ri + γmax
a′

Qθ−(s
′
i , a

′)

6 Compute the loss over the mini-batch:

L(θ) =
1

2k

k∑
i=1

(yi − Qθ(si , ai))
2

7 Update the Q-network by minimizing the loss:

θ ← θ − η∇θL(θ)

8 Periodically update the target network weights to match the online
network weights

9 Repeat from step 3 until convergence

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 61 / 79

DQN Improvements

Dueling DQN: Improve value estimation

Double DQN: Reduces overestimation bias

Prioritized Replay: Changes sampling strategy

Noisy DQN: Noisy networks instead of ϵ-greedy

Distributional DQN: From expected Q-value to distribution

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 62 / 79

Proximal Policy Optimization (PPO)

What is PPO?
An optimization algorithm aimed to approximate a policy function

πθ(a|s) ≈ Optimal Policy Distribution

Optimizes the policy using a clipped surrogate objective (here
simplified):

L(θ) = Et

[
clip

(
πθ(at |st)
πθold(at |st)

, 1− ϵ, 1 + ϵ

)
Ât

]
Uses clipping to ensure stable and reliable updates by preventing large
policy changes
Uses the advantage of the action Ât for the update

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 63 / 79

PPO Algorithm

1 Initialize the policy network πθ with random weights

2 Collect data by interacting with the environment using the current
policy

3 Compute the advantage Â(s, a) for each time step

4 Update the policy network by maximizing the PPO objective
(simplified):

L(θ) = Et

[
clip

(
πθ(at |st)
πθold(at |st)

, 1− ϵ, 1 + ϵ

)
Ât

]
5 Repeat steps 2 to 4 until convergence

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 64 / 79

Recap

Model-Free Methods:
Do not require a model of the environment
Suited for real-world complexities

Classes of Methods:
Value-Based (e.g., DQN), Policy-Based (e.g., PPO), and Actor-Critic

Tabular RL Limitations:
Struggle with large or continuous state/action spaces

Deep NNs:
Address scalability issues by approximating functions in complex
environments

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 65 / 79

Extra

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 66 / 79

Best Practices for RL Experiments

Reporting and Analysis

Plot reward versus steps/episodes to visualize learning progress and
convergence

Use relevant metrics, such as reward or domain-specific measures, for
evaluation

Document experimental settings and results for reproducibility and
future reference

Generalization and Robustness

Assess how well the policy generalizes to new or unseen environments

Evaluate the algorithm’s robustness to different conditions or noise

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 67 / 79

Best Practices for RL Experiments

Comparison

Compare multiple RL algorithms to identify the most effective
approach

Explore hyper-parameters or use hyperparameter optimization
techniques

Conduct multiple runs with different random seeds to ensure result
robustness and reproducibility

Report confidence intervals (CIs) to improve reliability with few runs

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 68 / 79

Best Practices for RL Experiments

Others

Consider normalization of the observation space and reward signal

Consider the sample efficiency of algorithms

Consider the NN size or function approximator used

Determine which environment parameters affect learning and how

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 69 / 79

Partially Observable Markov Decision Process

POMDP: (S ,A,T ,R,Ω,O, γ)

S : State space (hidden states)

A : Action space

Ω : Observation space

O : S × A× Ω→ [0, 1], Observation function

P : S × A→ S , State transition function

R : S × A→ R, Reward function

γ : Discount factor

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 70 / 79

Challenges and Algorithms for POMDPs

More suited for modeling realistic scenarios

Some information may not be available at deployment phase

Challenges:
Incomplete or noisy information
Hidden states complicate decision-making

Need DRL to converge also in front of partial observability

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 71 / 79

References - Part 1

[Sutton & Barto, 2018] Richard S. Sutton and Andrew G. Barto (2018)

Reinforcement Learning: An Introduction

The MIT Press, ISBN: 978-0262039246.

[Puterman, 1994] Martin L. Puterman (1994)

Markov Decision Processes: Discrete Stochastic Dynamic Programming

Wiley-Interscience.

[Rumelhart et al., 1986] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams (1986)

Learning representations by back-propagating errors

Nature 323, 533–536.

[Watkins & Dayan, 1992] Christopher J.C.H. Watkins and Peter Dayan (1992)

Q-Learning

Machine Learning 8, 279–292.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller (2013)

Playing Atari with Deep Reinforcement Learning

NIPS Deep Learning Workshop 2013, arXiv preprint arXiv:1312.5602.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 72 / 79

References - Part 2

[van Hasselt et al., 2015] Hado van Hasselt, Arthur Guez, and David Silver (2015)

Deep Reinforcement Learning with Double Q-learning

arXiv preprint arXiv:1509.06461.

[Sutton, 1998] Richard Sutton (1988)

Learning to predict by the methods of temporal differences

Machine Learning 3, 9–44.

[Wang et al., 2016] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc
Lanctot, and Nando Freitas (2016)

Dueling Network Architectures for Deep Reinforcement Learning

In Proceedings of The 33rd International Conference on Machine Learning,
1995–2003. PMLR.

[Fortunato et al., 2019] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot,
Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis,
Olivier Pietquin, Charles Blundell, and Shane Legg (2019)

Noisy Networks for Exploration

arXiv preprint arXiv:1706.10295.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 73 / 79

References - Part 3

[Hessel et al., 2017] Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul,
Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver (2017)

Rainbow: Combining Improvements in Deep Reinforcement Learning

arXiv preprint arXiv:1710.02298.

[Williams, 1992] Ronald J. Williams (1992)

Simple statistical gradient-following algorithms for connectionist reinforcement
learning

Machine Learning 8(3-4), 229–256.

[Mnih et al., 2016] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex
Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu
(2016)

Asynchronous Methods for Deep Reinforcement Learning

arXiv preprint arXiv:1602.01783.

[Bellemare et al., 2017] Marc G. Bellemare, Will Dabney, and Rémi Munos (2017)

A Distributional Perspective on Reinforcement Learning

arXiv preprint arXiv:1707.06887.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 74 / 79

References - Part 4

[Akiba et al., 2019] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and
Masanori Koyama (2019)

Optuna: A Next-generation Hyperparameter Optimization Framework

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[Schulman et al., 2017] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov (2017)

Proximal Policy Optimization Algorithms

arXiv preprint arXiv:1707.06347.

[Bellman, 1957] Richard Bellman (1957)

Dynamic Programming

Princeton University Press, Princeton Mathematical Series, Volume 1.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 75 / 79

See you soon at the lab session!

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 76 / 79

Installation Toolkit

Installation Toolkit:
IDE: Install an Integrated Development Environment (IDE) like
PyCharm or VSCode for coding
Environment: Anaconda, Miniconda, venv, . . .
Packages: Install the two packages ”stable baselines3” and
”tensorboard”. Alternatively, download the environment.yml or
requirements.txt file from the code in
https://terranovafr.github.io/teaching/2024-EASSS-Course.

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 77 / 79

https://terranovafr.github.io/teaching/2024-EASSS-Course

Creating Environments & Installation of Libraries

Environment Setup:
Using conda:

conda create --name myenv python=3.8

conda activate myenv

Using venv:

python3 -m venv myenv

source myenv/bin/activate (macOS/Linux)
myenv\Scripts\activate (Windows)

Installing Packages:
Install stable-baselines3 and tensorboard:

Direct installation: pip install stable-baselines3 tensorboard

Using environment.yml: conda env create -f environment.yml

Using requirements.txt: pip install -r requirements.txt

The pip command may be pip3

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 78 / 79

Installation using existing files

Using environment.yml:
Create environment: conda env create -f environment.yml

Using requirements.txt:
pip install -r requirements.txt

Franco Terranova (UL, CNRS, Inria, LORIA) Deep Reinforcement Learning August 20, 2024 79 / 79

	Markov Decision Process
	Model-Based vs Model-Free Methods
	Learning Methods
	Tabular vs Deep Reinforcement Learning
	Deep Q-Network and Proximal Policy Optimization
	Best Practices for RL Experiments

