Laboratory - Deep Reinforcement Learning: Foundations and Practical Environment Setup for Real-World Applications

Franco Terranova

Université de Lorraine, CNRS, INRIA, LORIA

24th European Agent Systems Summer School, EASSS 2024

Dublin, Ireland

August 20, 2024

https://terranovafr.github.io/teaching/2024-EASSS-Course

1 DRL Agents - Practical Setup

StableBaselines3

Environment - Practical Setup OpenAl Gym

3 Grid World

- POMDP
- Matrix Representation
- Generalization

Components:

• Libraries for Well-Established Algorithms:

• Stable Baselines3:

https://stable-baselines3.readthedocs.io/en/master/

- Ray Rllib: https://docs.ray.io/en/latest/rllib/index.html
- **TF-Agents:** https://www.tensorflow.org/agents
- Keras-RL: https://github.com/keras-rl/keras-rl

• Neural Network Architecture:

- Number of layers and neurons per layer
- Activation functions (e.g., ReLU, Tanh)
- Network type (e.g., feedforward, convolutional, recurrent)

Deep RL Agents: Setup

• Algorithm Hyperparameters:

- Learning rate
- Batch size
- Discount factor (γ)
- Exploration strategy (e.g., *e*-greedy for the DQN)
- . . .

Optimizer Selection:

- Adam
- Stochastic Gradient Descent
- . . .

• Additional Considerations (RL Specific):

- **Reward Shaping:** Modify rewards to guide the agent towards desired behaviors
- Training Stability: Use techniques to enhance training stability
- . . .

Stable Baselines3

番 / DQN

CED Edit on GitHub

DQN

Deep Q Network (DQN) builds on Fitted Q-Iteration (FQI) and make use of different tricks to stabilize the learning with neural networks: it uses a replay buffer, a target network and gradient clipping.

Available Policies

MlpPolicy	alias of DQNPolicy
CnnPolicy	Policy class for DQN when using images as input.
MultiInputPolicy	Policy class for DQN when using dict observations as input.

Notes

- Original paper: https://arxiv.org/abs/1312.5602
- Further reference: https://www.nature.com/articles/nature14236

Not

This implementation provides only vanilla Deep Q-Learning and has no extensions such as Double-DQN, Dueling-DQN and Prioritized Experience Replay.

Can I use?

- Recurrent policies: X
- Multi processing:
- Gym spaces:

Website: https://stable-baselines3.readthedocs.io/en/master/index.html

(日)

э

Environment Focus

3. 3

• The environment maps an action and state to the next state and reward:

Next State, Reward = $\mathcal{E}(\text{State}, \text{Action})$

where $\ensuremath{\mathcal{E}}$ represents the environment's dynamics

• Define internal dynamics so that agent can learn from it

- Standard Library: Widely used for creating and testing RL environments
- **Class-Based:** Provides a Python class with attributes and methods to define and manage environments
- Attributes: Includes state and action spaces, attributes for rewards calculation, ...
- Methods: Simulate the dynamics and should adhere to the standard
- Gymnasium: Currently maintained version of Gym

- __init__: Initializes the environment, setting up its initial dynamics and attributes
- reset: Resets the environment and returns:
 - State: The initial state
 - Info: A dictionary with additional information (optional)
- step(action): Takes an action, updates the environment, and returns a tuple containing:
 - Next State: The state after the action
 - Reward: The reward received after taking the action in the state
 - Done: A boolean indicating if the episode has ended
 - Truncated: A boolean indicating if the episode has been truncated
 - Info: A dictionary with additional information (optional)
- render: Displays a visual representation of the environment (optional)
- close: Cleans up and closes the environment when done (optional)

Franco Terranova (UL, CNRS, Inria, LORIA) Laboratory - Deep Reinforcement Learning

2

- **Observation:** (*x*, *y*) The current position in the grid
- Action: Movement directions — up, down, left, right
- Reward:
 - Small Penalty If the agent moves to an empty cell
 - Bigger Penalty If the agent moves into an obstacle or outside
 - Prize If the agent reaches the goal
- Episode: Terminates when the goal or cut-off is reached

• Static Environment:

- The environment does not change over time
- Finding the optimal policy is straightforward
- The cell view is a MDP for the task

General Case:

- The grid evolves or changes
- Application to another grid with different parameters
- A generalizable policy may be complex to determine with this observation, being a POMDP for the task

• Challenges on using this POMDP:

- Same state leading to different action outcome
- Exposing multiple training environments may lead to instable learning

• Full visibility:

- Grid is translated into a 1D array
- Agent, Obstacles, Goal: Encoding choice
 - $\bullet\,$ E.g. Current position represented with 1, Obstacles represented with 2s, and the goal with 3
- Now each observation will have a deterministic (reward, next state) when selecting an action
- Assumption: Fixed width and height for now

• Periodic Changes:

- The grid environment can be periodically switched (updated) with another version
- New environments can have different obstacle positions, and goal locations

• Dynamic Training:

- During training switch periodically based on a switch interval
- Ensures the agent can generalize across different environments

- What is the impact of ... ?
 - Episode cut-off
 - Rewards and their scale
 - Value of γ
 - Number of training iterations
 - Relation between grid size and number of iterations
 - Epsilon decay
 - Number of environments

- **Grid size** determines the number of input and output neurons of the agent's NN
- Agent's NN specialized to a given grid size
- Possible solutions:
 - Re-train a NN for every grid size
 - Padding techniques to the maximum grid size
 - Need to set a maximum
 - Waste of resources for small grids
 - May require a larger NN

Trade-off observability range

- E.g. surrounding pixels in the 1-hop neighborhood
- Features describing the environment
 - Requires manual features engineering
- Potential combination of these solutions

Image Source: Mesuga, Reymond Bayanay, Brian. (2021). A Deep Transfer Learning Approach to Identifying Glitch Wave-form in Gravitational Wave Data.

- Avoid feature engineering
- CNN will automatically determine a feature representation
- Updates driven by the DRL loss

Popular Gym Environments:

- CartPole-v1: Balancing a pole on a moving cart
- MountainCar-v0: Driving a car up a hill
- LunarLander-v2: Landing a spacecraft on the moon
- Atari environments: Classic arcade games (e.g., Pong-v0, Breakout-v0)

Example of Utilization:

import gymnasium as gym
env_cartpole = gym.make('CartPole-v1')

- State and Action Space Encodings: Efficient representation that allows learning
- Markovian Property: Ensures that observation encodes all information needed
- Exploration vs. Exploitation: Balancing the trade-off between exploring new strategies and exploiting known ones
- **Sample Efficiency:** Improving the efficiency of learning algorithms to require fewer samples

- Addressing catastrophic forgetting with **continual reinforcement learning**
- Exploring scenarios with multiple agents (**Multi-agent RL**) and incorporating game theory
 - Independent learners
 - Cooperation games
 - Competitive games
- Inverse Reinforcement Learning to derive realistic reward functions
- Meta Reinforcement Learning enables fast learning across different tasks

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dormann (2021)
 Stable-Baselines3: Reliable Reinforcement Learning Implementations.
 Journal of Machine Learning Research, 22, 268:1-8.
 http://jmlr.org/papers/v22/20-1364.html.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba (2016) OpenAl Gym.

arXiv:1606.01540, https://arxiv.org/abs/1606.01540.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton (2015) Deep learning. Nature, 521(7553), 436–444.

Advance Your RL Agents to New Horizons!

Franco Terranova (UL, CNRS, Inria, LORIA) Laboratory - Deep Reinforcement Learning